High dose MTX110 (soluble panobinostat) safely administered into the fourth ventricle in a non-human primate model

DDEL-09

David I. Sandberg¹, Natasha Kharas¹, Bangning Yu¹, Christopher F. Janssen¹, Amanda Trimble¹, Leomar Y. Ballester¹, Rajan Patel¹, Afroz S. Mohammad¹, William F. Elmquist², Rachael W. Sirianni¹,²

¹McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX
²University of Minnesota, Minneapolis MN
Drug delivery in pediatric neuro-oncology

- The blood-brain barrier (BBB) remains a significant obstacle to effective treatment of pediatric brain tumors, particularly in a recurrent or metastatic setting.

- Direct administration of chemotherapy to the CSF is one method that could bypass the BBB to improve tumor exposure to drug while minimizing systemic toxicity.

- Instillation of a 4th ventricle catheter enables loco-regional delivery of chemotherapy:
 - Clinical (NCT02458339, NCT02905110, NCT02940483)
Panobinostat (LBH-589)

- Histone deactylase inhibitors (HDACi)
 - Histone acetylation is frequently disregulated in cancer
 - HDACi promote acetylation of histones, which yields anticancer effects

- Panobinostat (LBH-589)
 - Pan-HDACi demonstrated to be efficacious against multiple pediatric brain tumors, including Group 3 medulloblastoma (MB)
 - Pei, et al., Cancer Cell 2016
 - Very poorly water soluble and lipophilic (logP ~2.8)

- MTX-110
 - Water soluble formulation of panobinostat achieved via a cyclodextrin inclusion complex (produced by MidaTech Pharma)
Approach

- Instillation of 4th ventricle catheter
 - 4 rhesus macaque monkeys
 - Posterior fossa craniectomy
 - Insertion of 4th ventricle catheter and lumbar drain

- Drug infusion and sampling
 - Infusions consist of 0.5mL of 300uM panobinostat (as MTX110)
 - **Group I (n=2)**: 1 treatment cycle consisting of 5 daily, consecutive infusions
 - **Group II (n=2)**: 4 treatment cycles performed over 8 weeks
 - Sampling of plasma, 4th ventricle CSF, and lumbar CSF conducted at regular intervals

- Analyses
 - Detailed neurological evaluations
 - MRI scan to confirm catheter placement
 - Postmortem histological assessment of brain, spinal cord, and peripheral tissues
 - Plasma and CSF processed by mass spectrometry for pharmacokinetic measurements
Results: catheter placement

- Catheter placement was confirmed by MRI and visual inspection at necropsy
- Ventricles were of normal size with no evidence for any gross abnormality
Results: toxicity

- Detailed neurological / behavioral assessments were normal throughout the study.
- Focal ependymal disruption in the pons was observed in 3 out of 4 primates, which was most likely a result of catheter placement. Mild, focal inflammatory infiltrates were observed regionally in the meninges, choroid plexus, and subependymal zone of the brainstem.
- All other assessments were normal.
Results: drug levels

● No panobinostat was detected in any plasma sample
● Drug levels were highest in the 4th ventricle samples and declined over time
● Lumbar samples yielded lower concentration of drug that became undetectable at later time points
● Repeat dosing studies demonstrated highly reproducible peak/trough levels with no evidence for drug accumulation over multiple treatment cycles
Conclusions

- 4th ventricle catheters were successfully instilled in rhesus macaque monkeys to enable locoregional infusion of the chemotherapeutic agent MTX110 (water soluble panobinostat)
- Treatments were well-tolerated, with no evidence of toxicity under this dosing regimen
- Drug levels in the 4th ventricle and lumbar samples suggest rapid distribution of panobinostat and likely clearance to tissue and/or via turnover of CSF
- Drug levels in the CNS reached a therapeutic range
- These preclinical data support an expectation of safety for administration of MTX110 via the 4th ventricle
 - Clinical trial is ongoing (NCT04315064)
Acknowledgments

• Funding sources:
 • The Ian’s Friends Foundation
 • The Dr. Marnie Rose Foundation
 • Dr. Dick Basset
 • The National Institutes of Health
 • R01NS111292 (NINDS)
 • R01HD099543 (NICHD)